Iniciar sesión

¿Olvidaste la contraseña?

  • Saltar a la navegación principal
  • Saltar al contenido principal
  • Saltar a la barra lateral principal
  • Saltar al pie de página
Logo Economipedia Crema

Economipedia

Haciendo fácil la economía

Registro
  • Precios
  • Iniciar sesión
  • Cursos
  • Diccionario
  • Guías
  • Análisis
    • Actualidad
    • Mercados
    • Cultura
    • Rankings
  • Más resultados...

    Generic selectors
    Exact matches only
    Search in title
    Search in content
    Post Type Selectors
    Search in posts
    Search in pages
Aprende economía, inversión y finanzas de forma fácil y entretenida con nuestros cursos.
MÁS INFORMACIÓN AQUÍ

Esperanza matemática

Redactado por: José Francisco López
Revisado por: Guillermo Westreicher
Actualizado el 1 septiembre 2020
4 min
  • Ejemplo de esperanza matemática
  • Cálculo de la esperanza matemática
  • ¿Para qué se utiliza la esperanza matemática?

La esperanza matemática de una variable aleatoria X, es el número que expresa el valor medio del fenómeno que representa dicha variable.

La esperanza matemática, también llamada valor esperado, es igual al sumatorio de las probabilidades de que exista un suceso aleatorio, multiplicado por el valor del suceso aleatorio. Dicho de otra forma, es el valor medio de un conjunto de datos. Esto, teniendo en cuenta que el término esperanza matemática está acuñado por la teoría de la probabilidad.

Mientras que en matemáticas, se denomina media matemática al valor promedio de un suceso que ha ocurrido. En distribuciones discretas con la misma probabilidad en cada suceso, la media aritmética es igual que la esperanza matemática.

Ejemplo de esperanza matemática

Vamos a ver un ejemplo sencillo para entenderlo.

Sólo el 2% de la población sabe lo que quiere y cómo lo va a conseguir ¿y tú?

Tu dinero = tu tiempo + tu talento. A lo último, te ayudamos nosotros.

Mejora tu conocimiento en finanzas aprendiendo de los mejores profesionales, con cursos efectivos y entretenidos.

Ver cursos

Imaginemos una moneda. Dos caras, cara y cruz. ¿Cual sería la esperanza matemática (valor esperado) de que salga cara?

La esperanza matemática se calcularía como la probabilidad de que, tirando la moneda un número muy grande de veces, salga cara.

Dado que la moneda solo puede caer en una de esas dos posiciones y ambas tienen la misma probabilidad de salir, diremos que la esperanza matemática de que salga cara es una de cada dos, o lo que es lo mismo, el 50% de las veces.

Vamos a hacer una prueba y vamos a tirar una moneda 10 veces. Supongamos que la moneda es perfecta.

Tiradas y resultado:

  1. Cara.
  2. Cruz.
  3. Cruz.
  4. Cara.
  5. Cruz.
  6. Cara.
  7. Cara.
  8. Cara.
  9. Cruz.
  10. Cruz.

¿Cuantas veces ha salido cara (contamos las C)? 5 veces ¿Cuantas veces ha salido cruz (contamos las X)? 5 veces. La probabilidad de que salga cara será de 5/10=0,5 o, en porcentaje, del 50%.

Una vez ha ocurrido ese suceso podemos calcular la media matemática del número de veces que ha ocurrido cada suceso. El lado cara ha salido una de cada dos veces, es decir, un 50% de las veces. La media coincide con la esperanza matemática.

Cálculo de la esperanza matemática

La esperanza matemática se calcula utilizando la probabilidad de cada suceso. La fórmula que formaliza este cálculo se enuncia como sigue:

Dónde:

  • X = valor del suceso.
  • P = Probabilidad de que ocurra.
  • i = Periodo en el que se da dicho suceso.
  • N = Número total de periodos u observaciones.

No siempre la probabilidad de que ocurra un suceso es la misma, como con las monedas. Existen infinidad de casos en que un suceso tiene más probabilidad de salir que otro. Por eso utilizamos en la fórmula la P. Además, al calcular números matemáticos debemos multiplicar por el valor del suceso. Abajo vemos un ejemplo.

¿Para qué se utiliza la esperanza matemática?

La esperanza matemática se utiliza en todas aquellas disciplinas en las que la presencia de sucesos probabilísticos es inherente a las mismas. Disciplinas tales como la estadística teórica, la física cuántica, la econometría, la biología o los mercados financieros. Una gran cantidad de procesos y sucesos que ocurren en el mundo son inexactos. Un ejemplo claro y fácil de entender es el de la bolsa de valores.

En la bolsa de valores, todo se calcula en base a valores esperados ¿Por qué valores esperados? Porque es lo que esperamos que suceda, pero no podemos confirmarlo. Todo se basa en probabilidades, no en certezas. Si el valor esperado o esperanza matemática de la rentabilidad de un activo es de un 10% anual, querrá decir que, según la información que tenemos del pasado, lo más probable es que la rentabilidad vuelva a ser de un 10%. Si solo tenemos en cuenta, claro está, la esperanza matemática como método para tomar nuestras decisiones de inversión.

Dentro de las teorías sobre mercados financieros, muchas utilizan este concepto de esperanza matemática. Entre esas teorías se encuentra la que desarrolló Markowitz sobre las carteras eficientes.

En números, simplificando mucho, supongamos que las rentabilidades de un activo financiero son las siguientes:

Rentabilidad en los años 1, 2, 3 y 4.

  1. 12%.
  2. 6%.
  3. 15%
  4. 12%

El valor esperado sería el sumatorio de las rentabilidades multiplicadas por su probabilidad de suceder. La probabilidad de que «suceda» cada rentabilidad es de 0,25. Tenemos cuatro observaciones, cuatro años. Todos los años tienen la misma probabilidad de repetirse.

Esperanza = ( 12 x 0,25 ) + ( 6 x 0,25 ) + ( 15 x 0,25 ) + ( 12 x 0,25 ) = 3 + 1,5 + 3,75 + 3 = 11,25%

Teniendo en cuenta esta información, diremos que la esperanza de la rentabilidad del activo es del 11,25%.

Esperanza de vida

  • Diccionario económico
  • Estadística
  • Matemáticas
  • Ejemplo de esperanza matemática
  • Cálculo de la esperanza matemática
  • ¿Para qué se utiliza la esperanza matemática?
Login
Please login to comment

Barra lateral principal

Lo más leído del mes

  • Contado O Crédito
    Pagar al contado o pedir un crédito
  • Indicadores Económicos Adelantados
    ¿Para qué sirven los indicadores económicos adelantados?
  • 2023 (1) (1)
    Los 5 retos de la economía mundial en 2023
  • ¿Cómo encontrar trabajo en internet?
    ¿Cómo encontrar trabajo en internet?
  • Gasto Militar Incremento
    ¿Qué implica el gasto en defensa para la economía?
  • Definiciones de economía

  • Industrial revolution
  • Método de igualación
  • Dispersion measures
  • Investment
  • Aggregate demand
  • Guías más leídas

  • ¿cómo Hacer Un Informe Paso A Paso?
    ¿Cómo hacer un informe paso a paso?
  • Metaverso
    Algo pasa con el Metaverso: Todo lo que quieres saber y no te atreves a preguntar
  • IRPF
    ¿Qué porcentaje de IRPF me corresponde en mi nómina de España?
  • Guia Nfts
    La revolución de los NFTs: la guía definitiva para entenderlos
  • Guia
    Guía: ¿Cómo hacer un plan de marketing? Paso a paso
  • Footer

    Diccionario económico

    • Diccionario económico
    • Definiciones de Economía
    • Definiciones de Microeconomía
    • Definiciones de Macroeconomía
    • Definiciones de Finanzas

    Contenidos de economía

    • Cursos de economía
    • Noticias y artículos sobre mercados
    • Rankings económicos
    • Noticias y artículos de sociedad
    • Fuentes

    Sobre nosotros

    • ¿Qué es economipedia?
    • ¿Quiénes somos?
    • El equipo
    • Empleo
    • Ayuda
    • Contacto
    Si quieres colaborar con nosotros o hacernos llegar cualquier sugerencia, puedes contactar a través de nuestro formulario de contacto.

    Síguenos en redes sociales:
    Logo Economipedia

    Síguenos en redes sociales

    • Icono Facebook
    • Icono LinkedIn
    • Icono Twitter
    • Icono YouTube
    • Icono Instagram
    • Ayuda
    • Aviso legal
    • Cookies
    • Privacidad
    • Términos y condiciones

    Copyright © 2023 Economipedia

    Domina tus finanzas
    ¡Haz que tu dinero trabaje para ti!

    40% de descuento en la suscripción anual a Economipedia. Solo hasta el jueves 30 de marzo (incluido).

    Todos los detalles aquí:

    Suscripción a Economipedia

    wpDiscuz