Media: ¿Qué significa y cómo se calcula?
- La principal ventaja es que resume un conjunto de datos en un único valor representativo y nos da mucha información al darnos el valor promedio.
- Se puede calcular fácilmente, siendo sensible a todos los cambios en los datos.
- Se calcula de diferentes formas. La más común es la aritmética, que es la suma de todos los valores entre el número de valores que haya.
- También están la media ponderada, la media geométrica o la media armónica.
¿Qué es la media?
La media es el valor promedio de un conjunto de datos numéricos. Se calcula como la suma del conjunto de valores dividida entre el número total de valores. Por ejemplo, la media entre dos números, 10 y 20, es 15.
La media, a diferencia de la esperanza matemática, es un término matemático. Por su parte, la esperanza matemática es un término estadístico, relacionado con las probabilidades. El cálculo de ambas variables viene, muchas veces, a ser el mismo. No obstante, no siempre se utilizan en el mismo contexto.
Significado y ejemplo de la media
La media nos dice el valor medio. Esto nos da mucha información. Por ejemplo, si tenemos las alturas de 10 alumnos de clase y la media es de 130 cm, sabremos que por la estatura media serán niños de unos 10 años.
Imagina que tienes un grupo de amigos y quieres saber cuántos libros leyeron en el último año. Aquí tienes el número de libros que leyeron cada uno:
- Ana: 6 libros
- Bruno: 8 libros
- Carmen: 12 libros
- Diego: 10 libros
Para calcular la media, sumamos el total de libros leídos:
6 + 8 + 12 + 10 = 36 libros
Después, dividimos esa suma entre la cantidad de amigos, que en este caso es 4:
36 ÷ 4 = 8 libros
Así que la media nos dice que, en promedio, cada uno de los amigos leyó 8.4 libros en el último año.
¡Ojo! A veces puede darnos información que nos puede llevar a equivocaciones, especialmente cuando hay datos extremos. Por ejemplo, si te digo que un niño tiene dos barras de pan y otro niño no tiene nada, la media nos dice que de media tienen una barra de pan. Pero en estos momentos eso no es así.
¿Cómo se calcula?
Existen muchas formas de calcular una media. La más conocida es la media aritmética. Aun así, hay otras formas para calcular la media de un conjunto de valores, como la media geométrica, la ponderada o la armonizada.
Vamos a verlas una a una:
Media aritmética
Es la forma que todos conocemos en la que todas las observaciones tienen la misma ponderación y la solemos calcular con la siguiente fórmula:
Donde x es el valor de la observación i, y N el número total de observaciones.
Supongamos que nuestras calificaciones en la escuela son:
Asignatura | Nota |
Matemáticas | 7 |
Educación Física | 8 |
Biología | 5 |
Economía | 10 |
N = número total de asignaturas = 4
Entonces aplicando la fórmula que acabamos de exponer, el resultado sería:
Nuestra nota media será de un 7,5.
Media ponderada
Ahora vamos a ver un ejemplo en el que vamos a calcular nuestra nota de Economía. Nuestra nota media de economía, va a depender de tres notas. Dado que la importancia o ponderación, de las distintas partes de la asignatura no es el mismo, tomaremos como referencia la siguiente fórmula:
Donde x es el valor de la observación i, P es el peso o importancia de cada observación y N el número total de observaciones.
Trabajo sobre el crash del 29 — 20%
Examen final ———————— 70%
Asistencia a clase —————— 10%
En el trabajo sobre el crash del 29, gracias a que buscamos información en Economipedia, nos pusieron un 9,5. En el examen final tuvimos un 8,5. Sin embargo, solo asistimos a 10 clases de un total de 20. Por lo que nuestra nota en asistencia a clase es de un 5.
Para saber nuestra nota final de la asignatura de economía debemos multiplicar nuestra nota por la ponderación. Tal que:
Nuestra nota final de la asignatura es de 8,35.
Media geométrica
La media geométrica de conjunto de números positivos, y siempre positivos, es la raíz n-ésima del producto del conjunto de números.
Dado que es un producto conjunto, si uno de los elementos es cero, entonces el producto total será cero. Y, en consecuencia, la raíz dará como resultado cero. Por ello, debe siempre tenerse en cuenta que ninguno de los números sea cero.
Donde N es el número de observaciones que tenemos.
Esta media se utiliza principalmente para variables en tantos por uno (porcentajes) o índices. Su ventaja sobre las demás formas de cálculo es su menor sensibilidad a valores extremos de las variables. Su desventaja, sin embargo, es que no se pueden utilizar números negativos, ni valores iguales a cero.
Supongamos los resultados de una empresa. La empresa ha generado un 20% de rentabilidad el primer año, un 15% el segundo año, un 33% el tercer año y un 25% el cuarto año. Lo fácil, en este caso sería sumar las cantidades y dividir entre cuatro. Sin embargo esto no es correcto.
Para calcular la media de varios porcentajes debemos hacer uso de la media geométrica. Aplicado al caso anterior, tendríamos lo siguiente:
El resultado es 1,23, que expresado en porcentaje es un 23%. Lo que quiere decir que en promedio, cada año la empresa ha ganado un 23%. Dicho de otra forma, si cada año hubiese ganado un 23%, hubiera ganado lo mismo que ganando un 20% el primer año, un 15% el segundo, un 33% el tercero y un 25% el último año.
NOTA: Si las rentabilidades fueran negativas, no se pondrían números negativos. Si la rentabilidad es del -20%, el número a multiplicar sería 0,80. Si la rentabilidad es del -5%, el número a multiplicar sería 0,95. En conclusión si las rentabilidades son positivas, a uno le sumamos el porcentaje en tanto por uno. Mientras que, si las rentabilidades o porcentajes son negativos, a 1 le restamos el porcentaje en tanto por uno.
Media armonizada
La media armonizada de un conjunto de valores es igual a la inversa de la media aritmética. Su fórmula queda tal que:
Es recomendada para calcular velocidades. Es especialmente sensible a valores extremos pequeños, pero poco sensible a valores extremos grandes. En economía se usa para calcular uno de los índices más famosos y utilizados en estadística económica, el índice de Paasche.
Supongamos que tenemos una empresa con reparto a domicilio en moto. Nos realizan un encargo a 4 kilómetros. El primer kilómetro el repartidor va a una velocidad de 30 km/h, el segundo kilómetro a 25 km/h, el tercer kilómetro se encuentran con tráfico y reduce la velocidad a 15 km/h y el último tramo a 35 km/h.
Nos disponemos a calcular la velocidad media del repartidor y obtenemos que:
La velocidad media de nuestro repartidor durante el reparto ha sido de 23,5 km/h.
En Economipedia, queremos resolver todas tus dudas. Por eso, hemos recopilado las preguntas más frecuentes sobre este tema. Si no encuentras la respuesta que buscas, no dudes en dejarnos un comentario.
¿Qué es la media en estadística?: La media es un valor que se obtiene al sumar todos los elementos de un conjunto y dividir el resultado entre el número de elementos, reflejando el promedio de los datos.
¿Cuál es la fórmula de la media aritmética?: La fórmula de la media aritmética es: suma de todos los valores dividida entre el número total de datos.
¿Cuáles son las principales ventajas de usar la media?: La media resume un conjunto de datos en un único valor representativo y se puede calcular fácilmente, siendo sensible a todos los cambios en los datos.
¿Cuándo es útil aplicar la media ponderada?: La media ponderada es útil cuando los datos tienen diferentes grados de importancia o peso, permitiendo un promedio más representativo.
¿Cuál es la diferencia entre media aritmética y media geométrica?: La media aritmética se obtiene sumando todos los valores y dividiéndolos por el total, mientras que la media geométrica implica multiplicar todos los valores y luego calcular la raíz enésima.