Coeficiente de correlación lineal
La correlación, también conocida como coeficiente de correlación lineal (de Pearson), es una medida de regresión que pretende cuantificar el grado de variación conjunta entre dos variables.
Por tanto, es una medida estadística que cuantifica la dependencia lineal entre dos variables, es decir, si se representan en un diagrama de dispersión los valores que toman dos variables, el coeficiente de correlación lineal señalará lo bien o lo mal que el conjunto de puntos representados se aproxima a una recta.
De una forma menos coloquial, la podemos definir como el número que mide el grado de intensidad y el sentido de la relación entre dos variables.
Siendo:
Cov (x;y): la covarianza entre el valor «x» e «y».
σ(x): desviación típica de «x».
σ(y): desviación típica de «y».
El coeficiente de correlación lineal también se utiliza en el mundo de la inversión para valorar el riesgo de una cartera de inversión. Un mayor o menor grado de correlación entre dos variables influye de forma directa sobre el precio de cotización del activo. Si te gustaría saber cómo configurar una cartera de inversión, te dejo por aquí un contenido relacionado que hemos elaborado: Curso de carteras de inversión.
Valores que puede tomar el coeficiente de correlación lineal
ρ = -1 Correlación perfecta negativa
ρ = 0 No existe correlación
ρ = +1 Correlación perfecta positiva
Hablamos de correlación positiva si siempre que el valor «x» sube, el valor «y» sube, y además con la misma intensidad (+1).
En el caso opuesto, si siempre que el valor «x» sube, y el valor «y» baja, y además con la misma intensidad, entonces estamos hablando de correlación negativa (-1).
Es importante saber que esto no quiere decir que lo hagan en la misma proporción (salvo que tengan la misma desviación típica).
Representación gráfica del coeficiente de correlación lineal
Correlación perfecta positiva:
No hay correlación:
Correlación perfecta negativa:
Consejo: en muchas ocasiones, no tenemos los medios o los datos suficientes para utilizar esta fórmula. Por ello, si tenemos dos series de precios, podemos calcular el coeficiente de correlación en excel, usando la siguiente función: coef.de.correl(serie de precios x;serie de precios y).