Función de probabilidad de la distribución de Bernoulli

La distribución de Bernoulli es un modelo teórico utilizado para representar una variable aleatoria discreta la cual solo puede finalizar en dos resultados mutuamente excluyentes. 

Artículos recomendados: distribución de Bernoulli, ejemplo Bernoulli, espacio muestral y Regla de Laplace. 

Función de probabilidad Bernoulli

Captura De Pantalla 2019 12 02 A Les 19.29.46
Función de distribución de probabilidad de la distribución de Bernoulli.

Definimos z como la variable aleatoria Z una vez conocida y fijada. Es decir, Z va cambiando aleatoriamente (el dado gira y gira en un único lanzamiento) pero cuando la observamos fijamos el valor (cuando el dado cae encima de la mesa y da un resultado concreto). Es en ese momento cuando evaluamos el resultado y le asignamos uno (1) o cero (0) en función de lo que consideremos “éxito” o no “éxito”.

La variable aleatoria Z una vez fijada solo podrá tomar dos valores concretos: cero (0) o uno (1). Entones, la función de distribución de probabilidad de la distribución de Bernoulli solo será distinta de cero (0) cuando z sea cero (0) o uno (1). El caso contrario sería que la función de distribución de la distribución de Bernoulli fuera cero (0) dado que z será cualquier valor distinto de cero (0) o uno (1). 

La función anterior también puede reescribirse como:

Captura De Pantalla 2019 12 02 A Les 19.32.57
Función de distribución de probabilidad de la distribución de Bernoulli.

Si sustituimos z = 1 en la primera fórmula de la función de probabilidad veremos que el resultado es p que coincide con el valor de la segunda función de probabilidad cuando z=1. Del mismo modo, cuando z=0 obtenemos (1-p) para cualquier valor de p.    

Momentos de la función

Los momentos de una función de distribución son valores específicos que registran la medida de distribución en distintos grados. En este apartado solo mostramos los primeros dos momentos: la esperanza matemática o valor esperado y la varianza.

Primer momento: valor esperado.

Captura De Pantalla 2019 12 02 A Les 19.40.04
Valor esperado de la distribución de Bernoulli.

Segundo momento: varianza. 

Captura De Pantalla 2019 12 02 A Les 19.43.03
Varianza de la distribución de Bernoulli.

Ejemplo de momentos de Bernouilli

Suponemos que queremos calcular los dos primeros momentos de una distribución de Bernoulli dada una probabilidad p = 0,6 tal que

Captura De Pantalla 2019 12 02 A Les 19.44.41
La frecuencia de la variable aleatoria D puede aproximarse satisfactoriamente a una distribución Bernoulli.

Donde D es una variable aleatoria discreta.

Entonces, sabemos que p = 0,6 y que (1-p) = 0,4. 

  1. Primer momento: valor esperado.
Captura De Pantalla 2019 12 02 A Les 19.46.36
El valor esperado es la probabilidad de éxito de la variable aleatoria D.

Segundo momento: varianza. 

Captura De Pantalla 2019 12 02 A Les 19.47.29
Cálculo de la varianza de la distribución Bernoulli.

Además, queremos calcular la función de distribución dada la probabilidad p = 0,6. Entonces: 

Captura De Pantalla 2019 12 02 A Les 19.48.40
Asociamos el esquema del inicio con los resultados obtenidos.

Dada la función de probabilidad: 

Captura De Pantalla 2019 12 02 A Les 19.49.51
Función de distribución de Bernoulli.

Cuando z = 1

Captura De Pantalla 2019 12 02 A Les 19.52.20
Función de distribución de Bernoulli cuando z = 1.

Cuando z = 0

Captura De Pantalla 2019 12 02 A Les 19.53.55
Función de distribución de Bernoulli cuando z = 0.

El color azul indica que las partes que coinciden entre ambas formas (equivalentes) de expresar la función de distribución de probabilidad de la distribución de Bernoulli. 

¿Quieres referenciar este artículo?

Paula Rodó , 15 de enero, 2020
Función de probabilidad de la distribución de Bernoulli. Economipedia.com