Matriz triangular

Una matriz triangular es una matriz cuadrada la cual tiene triángulos de ceros por encima o por debajo de la diagonal principal dependiendo de si es una matriz triangular superior o una matriz triangular inferior. También puede tener ceros en la diagonal aunque no sea invertible.

En otras palabras, una matriz triangular es una matriz cuadrada en la cual se pueden ver claramente triángulos de ceros por encima, por debajo y en medio de la diagonal principal. 

Más allá de su nombre, la matriz triangular es una matriz cuadrada que puede tener cualquier orden. El término triangular se refiere a la estructura que forman los ceros (0) dentro de la matriz.

Artículos recomendados: operaciones con matrices y diagonal principal.

¿Cómo identificamos una matriz triangular?

La matriz triangular puede clasificarse en matriz triangular superior, del inglés, «upper», y matriz triangular inferior, del inglés, «lower». 

  • Triángulos de ceros (0). 
  • Posición de los triángulos de ceros (0).
    • Por debajo de la diagonal principal: superior (U).
    • Por encima de la diagonal principal: inferior (L).
    • En la diagonal  principal: Singular.

Forma matriz triangular superior (upper)

La matriz triangular superior es una matriz cuadrada de orden n que tiene un triángulo de ceros (0) por debajo de la diagonal principal. 

Captura De Pantalla 2019 09 11 A Les 18.55.55
Matriz triangular superior.

Forma matriz triangular inferior (lower)

La matriz triangular inferior es una matriz cuadrada de orden n que tiene un triángulo de ceros (0) por encima de la diagonal principal. 

Captura De Pantalla 2019 09 11 A Les 18.58.07
Matriz triangular inferior.

Importante

La diagonal principal de una matriz triangular siempre habrá elementos distintos de cero (0). Asimismo, tampoco tienen que ser obligatoriamente unos (1). La matriz triangular solo se caracteriza por tener triángulos de ceros (0), los demás elementos pueden ser cualquier número. 

Aplicación 

La matriz triangular está presente en el método de descomposición Lower-Upper (LU) y en la descomposición de Cholesky, la cual se utiliza para transformar variables normales independientes en variables normales correlacionadas. 

Ejemplo teórico 

Identificar si las siguientes matrices son matrices triangulares.

Ejemplos Matrices Triangulares
Ejemplos de matrices.

¿Quieres referenciar este artículo?

Paula Rodó , 11 de septiembre, 2019
Matriz triangular. Economipedia.com