Muestra estadística

Una muestra estadística es un subconjunto de datos perteneciente a una población de datos. Estadísticamente hablando, debe estar constituido por un cierto número de observaciones que representen adecuadamente el total de los datos.

La estadística, como rama de las matemáticas, se encarga de recoger datos, ordenarlos y analizarlos. Es decir, cuando queremos estudiar un determinado fenómeno recurrimos a la estadística. Un buen ejemplo de fenómeno que estudia la estadística, es el salario medio de los ciudadanos de un país

En este sentido, por cuestiones de tiempo y coste, no podemos recoger la totalidad de los datos. Esta totalidad de los datos es lo que se conoce como población de datos o, simplemente, población.

¿Por qué se trabaja con muestras estadísticas?

Para explicar porque se utiliza una muestra estadística en lugar de la población total, vamos a recurrir al ejemplo planteado anteriormente.

Supongamos que queremos estudiar un fenómeno cualquiera. En nuestro caso, ese fenómeno es el salario medio de los ciudadanos de un país. La población de datos está formada por todos y cada uno de los trabajadores del país. Claro que por razones de tiempo y coste sería imposible ir preguntando a cada trabajador cual es su salario anual. Tardaríamos mucho tiempo o necesitaríamos muchos recursos.

En este punto aparece el concepto de muestra estadística. En lugar de preguntar a los millones de trabajadores de un país o región, tan solo recogemos una pequeña cantidad de datos. Por ejemplo, preguntamos a 100.000 personas. Esta tarea sigue siendo complicada, pero es mucho más asequible preguntar a 100.000 personas que preguntar a 30 millones.

Esta pequeña cantidad de datos ha de ser representativa. Es decir, debe representar adecuadamente a la población. Si las 100.000 personas a las que preguntamos se concentran en barrios ricos, obtendremos datos que no son representativos. El salario medio nos saldría mucho más alto de lo que es en realidad.

Características de una muestra estadística representativa

Si se quiere hacer una buena investigación, la calidad de la muestra estadística es esencial. De nada sirve realizar las métricas estadísticas más complejas con los modelos más sofisticados si la muestra estadística está sesgada. Es decir, si la muestra no es representativa.

A la hora de obtener una muestra representativa existen ciertos aspectos que el investigador debe conocer de antemano. Entre esos aspectos se encuentran las características de una muestra representativa. Las características de una muestra representativa son las siguientes:

  • Tamaño suficientemente grande: Cuando trabajamos con muestras estamos, normalmente, trabajando con una cantidad de datos inferior a la población. Ahora bien, para que una muestra estadística sea representativa deberá ser lo suficientemente grande como para considerarse representativa. Por ejemplo, si nuestra población está formada por 10 millones de datos y escogemos 10, es difícil que sea representativa. Eso sí, no siempre a mayor tamaño la muestra es más representativa.
  • Aleatoriedad: La selección de los datos de una muestra estadística debe ser aleatoria. Es decir, debe ser totalmente al azar. Si en lugar de realizarlo al azar, realizamos un proceso de selección de datos planificado, estamos introduciendo un sesgo a la obtención de datos. Por tanto, para evitar que la muestra sea sesgada y, por tanto, conseguir que sea una muestra representativa, debemos hacer una selección aleatoria.

Inferencia estadística

Una vez obtenidos tenemos la muestra representativa, entonces toca inferir ciertas métricas. A menudo, lo que nos interesa es saber cierta medida de una variable. En el ejemplo inicial, la variable sería el salario de los ciudadanos de un país. En este sentido, la métrica que queremos analizar es la media del salario de los ciudadanos de un país.

Esquema Inferencia Estadística

Es decir, tenemos una población de datos formada por todos los trabajadores de México. De dicha población obtenemos una variable, es decir, el salario anual. Utilizando las técnicas adecuadas obtenemos una muestra representativa. Y, por último, una vez tenemos un conjunto de datos con el que podemos trabajar utilizamos técnicas de inferencia estadística para calcular el salario medio.

Por supuesto, una vez tenemos el conjunto de datos, podríamos inferir otras medidas. Por ejemplo, cómo se distribuye el salario, qué porcentaje de trabajadores se encuentra por debajo de cierto salario o de qué tamaño es la brecha salarial.

Comparte este artículo:

Si te ha gustado este artículo, te recomendamos leer:

Deja un comentario