Medidas de posición: Qué son, tipos y ejemplos

Medidas De Posición Qué Son
  • Simplifican un gran conjunto de datos en un solo valor representativo o en segmentos más manejables.
  • Hacen más fácil entender y analizar grandes volúmenes de datos, proporcionando una vista clara de la distribución o del valor central de los mismos.

¿Qué son las medidas de posición?

Las medidas de posición son indicadores estadísticos que permiten resumir los datos en uno solo, o dividir su distribución en intervalos del mismo tamaño.

Medidas de posición: Explicación sencilla

Dicho de otra manera, las medidas de posición son herramientas estadísticas que nos ayudan a entender un conjunto de datos de manera rápida y eficiente. Por ejemplo, imagina que tienes un montón de números y quieres obtener una idea clara de qué representan en general, o cómo se distribuyen. Pues aquí es donde se usarían las medidas de posición.

Estas medidas pueden hacer dos cosas principales: resumir y dividir. Por un lado, pueden condensar toda la información que tienes en un solo número representativo, como el promedio, que te da una idea del valor medio de tus datos. Por otro lado, pueden partir tu conjunto de datos en segmentos iguales, lo que facilita su interpretación. Este proceso de división se hace a través de los cuantiles, que básicamente cortan tus datos en partes iguales, permitiéndote ver cómo se distribuyen a lo largo de diferentes puntos.

Importancia de las medidas de posición estadística

Son el primer paso que debe darse en el análisis descriptivo. Cuando queremos conocer información sobre un fenómeno, comenzamos recopilando datos.

Pero estos, por sí mismos, no nos van a aportar información relevante, por eso hay que analizarlos. Las medidas de posición, junto con las de dispersión, nos ayudan a agruparlos e incluso, a codificarlos.

Estos son el conocimiento principal y básico en estadística. De hecho, las clases universitarias de introducción se centran en ellas. Si no sabemos qué es un promedio, es más que probable que no sepamos entender otros conceptos como la regresión o el contraste de hipótesis.

Por este motivo, es uno de los conocimientos esenciales en ciencias como la económica.

Medidas de posición no central

Las medidas de posición se suelen dividir en dos grandes grupos: la de tendencia no central y las centrales. Las medidas de posición no centrales son los cuantiles. Estos realizan una serie de divisiones iguales en la distribución ordenada de los datos. De esta forma, reflejan los valores superiores, medios e inferiores.

Los más habituales son:

  • El cuartil: Es uno de los más utilizados y divide la distribución en cuatro partes iguales. Así, existen tres cuartiles. Los valores inferiores de la distribución se sitúan por debajo del primero (Q1). La mitad o mediana son los valores menores iguales al cuartil dos (Q2) y los superiores son representados por el cuartil tres (Q3).
  • El quintil: En este caso, divide la distribución en cinco partes. Por tanto, hay cuatro quintiles. Además, no existe ningún valor que divida la distribución en dos partes iguales. Es menos frecuente que el anterior.
  • El decil: Estamos ante un cuantil que divide los datos en diez partes iguales. Existen nueve deciles, de D1 a D9. El D5 se corresponde con la mediana. Por su lado, los valores superiores e inferiores (equivalentes a los diferentes cuartiles) se sitúan en puntos intermedios entre estos.
  • El percentil: Por último, este cuantil divide la distribución en cien partes. Hay 99 percentiles. Tiene, a su vez, una equivalencia con los deciles y cuartiles.

Veamos dichas equivalencias en conjunto.

La siguiente imagen muestra cómo usar fórmulas de hoja de cálculo para obtener medidas de posición no central. Las fórmulas varían ligeramente: para cuartiles, se usan los parámetros 1 (Q1), 2 (Q2), y 3 (Q3). Para deciles, quintiles y percentiles, se aplica una fórmula similar utilizando n/10, n/5 o n/100 respectivamente. Esto refleja la posición deseada, facilitando el cálculo de, por ejemplo, el segundo quintil como 2/5, el quinto decil como 5/10, y el percentil 50 como 50/100.

Medidas De Posicion 1 2

Medidas de posición central

Estas nos permiten resumir la distribución de los datos en un solo valor central, alrededor del cual se sitúan; mientras que las segundas dividen la distribución en partes iguales. Estas ya han sido desarrolladas en otros artículos de Economipedia, por tanto, nos limitaremos a ofrecer una información breve de cada una.

  • La media aritmética, geométrica o armónica: Son tres medidas centrales que nos indican un promedio ponderado de los datos. La primera es la más utilizada y la más conocida de las tres. La geométrica se aplica en series que muestran crecimientos porcentuales. Por su parte, la armónica es útil en el análisis de inversiones en bolsa.
  • La mediana: En este caso, esta es la medida de posición central más reconocible. Divide la distribución en dos partes iguales. De esta forma, expresa el valor mediano, que no medio. Es muy útil en variables como los ingresos o salarios, a la vez que está muy relacionada con la media y algunos de los cuantiles vistos.
  • La moda: Estamos ante una medida central de los valores más frecuentes. Por tanto, la moda nos informa sobre aquellos que se repiten en más ocasiones. Esta medida es muy útil en los estudios de mercado cuando medimos una impresión sobre un producto con una escala likert.

Vamos a mostrar las principales fórmulas de los tres tipos de medias ponderadas más utilizados. Todas ellas se pueden obtener en una hoja de cálculo.

Medidas De Posicion 1 1

Podemos comprobar que la primera se calcula dividiendo el sumatorio de los datos entre el número de ellos. La segunda, por su parte, es un multiplicatorio de los datos y su raíz enésima, siendo n el número de ellos. La tercera es una división entre la posición del dato y este.

Un ejemplo sobre medidas de posición

Imaginemos los valores de la renta per cápita de un país en una encuesta a veinte personas. Los hemos ordenado de menor a mayor y calculamos algunos cuartiles y deciles.

La imagen muestra cómo se haría. Incluimos las fórmulas.

Medidas De Posicion 2

Por tanto, en el ejemplo podemos observar que las personas que menos cobran (Q1 o D1) tienen unas rentas de 2900 o 2770. La renta mediana es de 3200 en ambos casos. Los de mayor renta (Q3 o D9) ganaron 3875 o 4620. En conclusión, estas medidas de posición no centrales ofrecen información muy interesante sobre los datos analizados.

En Economipedia, queremos resolver todas tus dudas. Por eso, hemos recopilado las preguntas más frecuentes sobre este tema. Si no encuentras la respuesta que buscas, no dudes en dejarnos un comentario.

¿Qué son las medidas de posición?: Las medidas de posición son herramientas estadísticas que resumen o dividen un conjunto de datos para facilitar su comprensión e interpretación.

¿Para qué se utilizan las medidas de posición?: Se utilizan para obtener un valor representativo de un conjunto de datos, como el promedio, o para dividir los datos en segmentos iguales, facilitando su análisis y comprensión.

¿Qué es un cuantil en el contexto de las medidas de posición?: Un cuantil es una forma de dividir un conjunto de datos en partes iguales. Por ejemplo, los cuartiles dividen los datos en cuatro partes iguales, cada una con un 25% de los datos, ayudando a entender cómo se distribuyen los valores.

¿Quieres referenciar este artículo?

Enrique Rus Arias , 09 de marzo, 2021
Medidas de posición: Qué son, tipos y ejemplos. Economipedia.com